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CONCENTRATED FORCE IN A TRANSVERSALLY-ISOTROPIC 

HALF-SPACE AND IN A COMPOSITE SPACE 

PMM Vol. 33, Np3, 1969, pp. 532-537 
V. A: SVEKLO 
(Kalmingrad) 

(Received October 22, 1968) 

The problem of the effect of a concentrated force in an isotropic (orthotropic) space has 
been examined in [l-3]. 

The problem is investigated below by the method of complex Smirnov-Sobolev solu- 
tions, generalized to a system of differential equations. 

The results obtained are of elementary nature just for a transversally isotropic solid. 

1. Complex aolutionr of the equilibrium equationr. If the poten- 
tials cp, I$, x are introduced by assuming 

then the equilibrium equations of a transversally isotropic body under the condition that 
the z-axis is along the axis of elastic symmetry become 

aL1 aQ ml aQ 3L.2 -- =+ay=o, ay-x=0, a&” -0 (1.2) 

L1=AAcp+Ld2~/dz2+(L+F)d2~/dz2 

L, = (L + F)Acp + LAX + Cd2xIdza (1.3) 

Q = NA$ + L&q / dz2, A = ata/dS Jr d2/dya 

Here A, L, F, N, C are elastic constants 143. Let us construct the solution of the system 

(1.2) in the form cp = Re ,I,0 (6) t $ = RW W, x = Rex” (6) (1.4) 

The variable 6 is defined by the relationship 
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s=aE+Bq+~5+f@)=o, a = cod& /3 = sin6 

5 = 5 - x0, rl = Y - YOl c=z-2, 

where the function j (6) is arbitrary. 
Complying with (1.2), and utilizing the differentiation formulas [5] 

as+ -=-Re+$[&&(~)], as ay 

(1.5) 

we obtain 
6’= -fiE+a~+v’5+f’(e) (1.6) 

(A + +L)cp" + (L + F)v2xo' = 0, (L + F) cp"' + (L + v"C)f' = 0 (1.7) 

(N + +L)Q"' = 0 (1.8) 
From (1. ‘7) we deduce 

I 

A+v2L (L+F)v2 

L-IF L+v"c = I 

o 
(1.9) 

i.e. the function Y (6) is constant in the anisotropy case under consideration, and equals 
the roots f ivr, & iv, of (1.9). For simplicity, we consider the VA in the latter to be 
real positive numbers. 

A particular solution of (1.7) 

~0’ (6,) = (L - v,2c) ok (e,), ~0’ (e,) = - (L + F) op (0,) (1.10) 

corresponds to each root v k, where the function wh is arbitrary. 
From (1.8) we deduce v = ivQ, va = ]f N/L, $"' is arbitrary. 

The variable ek (k = 1, 2, 3) is defined by the relationship 

6, = eke + P,V f rvkg + fl, (6,) - 9 (l.il) 
According to (1.1) 2 

u=-Re 
p3ws 

(L-vyL2c)~.r+~ 
6,' 1 

2 

v=-Re 

P 
, (L-vV,PC)6~ah-~] 

k=l 

w=(L+F& 
ZVkOk 

'6," 

03=9°' 

/.=l 

(1.12) 

Formulas (1.12) contain the arbitrary functions ok, jk and define a class of complex 
solutions of the equilibrium equations of the considered anisotropic medium. An analog- 
ous class of solutions can be constructed for the equilibrium equations of a medium with 
a general kind of anisotropy. The selection of the potentials (1.1) does not limit the 
generality of the solutions in the class (1.12) since a mutually one-to-one correspond- 
ence can be established between them and the “complete” system of potentials govern- 
ing the longitudinal and transverse displacements. 

Let us examine particular cases. 

a) Plane solutions. Let us put 8, = e. = const, fk I -+,then 

ak = coseo, flk = sir&,, 6,’ = -4 

ek = Ecoseo + r+t6, * iv&I (1.13) 
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The solution (1.12) is written as 

u = Re {[(_Z - vi%?) o1 + (L - v,‘V)o,lcos6, - ossin0,) 

v = Re ([(L - ~~~C)or + (L - vS2C)02]sin 6, $ oscos6s? 

w = Re [-(L + F)i (~101 -I- vlo2)] 

(1.14) 

In addition to the arbitrary analytic functionso ,,it contains the arbitrary parameter 

6,,, the governing solution of the plane problem in a plane passing through the z-axis and 
making the angle 6, with the zzplane. Integrating (1.14) with respect to 9, between 0 

and 2n, we obtain a new solution of the equilibrium equations (1.2). The development 
in this direction has been expounded in [S]. 

b) Homogeneous solutions. We obtain these by putting fk E 0 in (1.11). 
In this case we have 

ak = p-” (B,q - ivkct), fik = -P-2 @kg + iv&l) 

6,’ = -p& + akq = R, = (p2 + Vk2~)“‘, f,’ = e2 + ,,’ (1.15) 

Just as in [7], it can be shown that solutions of the equilibrium equations of an aniso- 
tropic medium corresponding to the effect of a concentrated force at a point of infinite 
space or at a point of a half-space boundary are contained in this class. 

2. Concentrated force in infinite space. Let us place the origin at the 

point where a concentrated force of intensity p acts in the direction of the z-axis. 
We put ok = iDkin the solution (1.12). where D, are real constants and 0s = 0 (no 

torsion). Then, taking account of (1.15), we obtain after separating out the real part and 
demanding boundedness of the radial displcement at p 

up= _ i (L ,“i”‘Dk , w=-(L 
k-1 k k* 

(Rk* = R, + ‘kz) 

= 0 

= ‘kDk tF)z R 

h-=1 k 

(2.1) 

The following condition is hence imposed on the Dk 

(L - VI~C)D~ + (L + vs2C)D2 = 0 (2.2) 

We derive another relationship from the requirement of equivalence between the load- 

ing due to stresses distributed over a small sphere described around the origin and the 
applied concentrated force P. We hence obtain 

(F + v12C)D, + (F + v,~C)D, = -P / 4nL (2.3) 

Substituting the value of D,into (2.1). we finally write 

Eow+w 1 C 1 
up= --- 

Y2 - Vl &RI* RzRz* 1 
Eo 

[ 
Vl (L - v22C) vz (L - v12C) 

WZ--~ - 
% - Vl Rl RZ 1 

(2.4) 

E. = P [4nLC I vr + v2)]-r 

Putting C = A = S + 2p, L = p, F = h, where h, p are Lame coefficients, we obtain 
the appropriate result for an isotropic medium after resolving the indeterminacy. 

3. Concentrated force at a point of a half-#pace. Ifa concentrated 
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fo1ce.P is applied at a point MO (50, ~0, zO) of a half-space, then we 

u = u1+ =.2, v = Vl + v2, w = Wl + w, 

write (2.4) as 

(3.1) 

where p is the solution connected with the variable $, defined by the relationships 

6, = E.aP + rlSP + ivP (z - zo) = 0 

up2 + BP2 = 1 (P = 1, 2) (3.2) 

Let us put the solution with subscript d in correspondence with the pq-solution up*“, 

“Pa01 %I0 connected with the variable 0,, defined by the relationship 

6P7 = Qz,, + VP,, - ivpzo - ivqz = 0 

apq2 + BP92 = 1, 6,,’ = R,, = [P” + (vPzo + ~~z)~l”~ 
(3.3) 

This latter is define: uniquely by the demand of coincidence of all the variables on 
the half-space boundary z = 0. 

We find the solution with subscript pq from the condition that the stresses uzp*, vz~p*, 

GYP* corresponding to the particular solution 

uP l = up + UPl0 + upz** VP* = VP + VP10 + vpzo 

“P * = wp + WP10 + wps” (p=i, 2) 
(3.4) 

vanish at, z = 0. 

Let us introduce potentials by taking account of the absence of torsion 

*_a(pp* 
NJ,* ?&+ 

up - ax ’ vP 
*say, wp*=x (3.5) 

Utilizing (1.10) and taking into account that apq = up, ppq = BP, 8,, =’ Op at z=O. 
we obtain (F + v12c)wp, + (F + Q2C)V,Wp, = (F + vp2C)vpop 

(F + vmmp 1 + (F + v22c)op, = -(F + Yp2C)Op (3.6) 
from which 

OPq = 

F + vp2C vP + vpI 
F + vq2C vp - vql OP = iA~qD~l q1= 3 -- q (3.7) 

Therefore, we have for the radial displacement and the displacement in the z-direction 

o _ 
uPPq - 

(L - vp2C) A,&‘, (v,z, + v,z) 
wPq = 

- (L + F) A,,v,Dp 

PRP, 

.- 
9 R (3.8) 

PQ 

The functions upPpo are unbounded for p = 0. Hence, we transform from the solution 

(3.8) to the new pq-solution obtained from (3.8) by substituting the expression 
1 - (vPzo f vqz)/Rpq for the fraction vPzo f vpz / R,, in the formula for uPpQO , which 
is equivalent to adding to (3.8) a particular solution of the form 

u” = A0E;p--2, v” = A”qp-a w” = 0 (3.9) 
A0 = const 

which satisfies the boundary conditions and the conditions at infinity. The need to add 
it can be discarded for other boundary conditions, say, rigid framing of the half-space 
boundary. We obtain 

(L - v,‘C) A,,D, (L + F) Apqv&, 
%P9 = 

RPQRPQ* ’ 

wpq=- 
R (3.10 ) 

Pq 
R l-w 

+=R 
PQ + vpzo + VP2 

The final formulas for elastic displacements are written as 
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(Pl = 3 - P) 

For z, = 0 we derive a solution from (3.11) which corresponds to the effect of a con- 
centrated force on a half-space boundary [S] (*) 

P (L + F) PWVZ VI 1 V-2 1 

uP = 2nL (l)a - VI) r 
-_ 

A + vlaF &Rx* A + v2F I&%* 1 
P CL + F) VA 1 1 

(3.t2) 

Putting w = 2nL (VI - VI) [ 

V22 VI2 -- 
A + vzaF RI A + v12F x 1 

A = C = h + 2~, F =: I., I. - p 
in (3. II), and resolving the indeterminacy, we obtain the known Mindlin solution [S]. 

4, Concentrated force at P point of comporite spree. Here,besides 
the “reflected” PP-solution it is necessary to take account of the “refracted” pq,-solution 
connected with the variable E$ defined by the relationship 

Q1) = ap*(l)S + ppq(l+ - ivpzo + iv,(“)z = 0 (4.1) 
Particular solutions of the form 

=P * = up + SPl0 + upa0 4 Up.p) + r$p, . . . (4.2) 

are selected in such a manner that given conditions of coupling the considered transver- 
sally isotropic half-spaces would be satisfied. For example, in the case of a smooth con- 
tact, we have at the interface z = 0 

a, = 0, (1) , w = w(f), tzp = $2 = 0 (4.3) 
If a concentrated force of intensityP acts at the point MO (za, go, 20 of a half-space 

with the elastic constan& A, C, P ,..., then in the absence of torsion we have in place 

of(3.6) 

L(F + vlaC)opl + L(F + v,~C)O~,-L(“) (F(~)+v~(~)BC(~))O~~(~) -L(‘)(F(I)+v(‘)~C(~))O(~)P~ = 
= -L (F + vP~C)WP 

% (F + ‘@C&$X + Va (F $- VaaC)ops = Vp (F -b Vp2c)mp 

vx(*) ($1) + Vl(lJa C)oPl(l) + vz(l) (F(@ + v,(lh C)op,(~ = 0 (4.4) 

%@pl+ Vp@pa + 
(11 

Vi cap&l) + v~l)~p~l) = vpop 

The relationships (4.4) allow the construction of a solution of the formulated problem 
in elementary form, and in particular, obtaining the appropriate solution for an isotropic 
composite space comprised of isotropic half-spaces of various materials. However, because 
of the awkwardness of the formulas obtained, it will be presented just for the case when 
the materials of the half-spaces are identical A@) = A,... 

Under the mehtloned conditions we have 

‘) It is necessary to eliminate the inaccuracy in evaluating the integrals (4.12) in [6J 

p. 1103. 
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OPP = % VP, + Q,,), apqcl) = l/z VP, - Q,,) 

%K = 
vp (vq1- Ypf F + yp2c VP -t -Jql 

VP @*1- vq) ’ QP, = - F + vq2c vql - vq 
(4.5) 

Substituting (4.5) into formulas for displacements of the form (1.12) aud adding the 

solution of the form (3.9), we find the desired solution 

u =__Eow+F) 
P (VI - vg p i [y-“p’ - R “np + 

p=1 PP PP* 
F + vp12c 

+ F + vp2C 
vP 

Rpp;Rpp,* + 

w _zzz - 
(yl E-“v2)2 .$j (L - vpz2C) VP pp ;2vpf - g_ + 

P-l P PP 

F + vp2C 

+ F + Vp12c 

vp vPl e + Rpp (1) 
f >I 

l4.6) 

R pp, = [p’ + (Yn,Z - V,Zo)“]“, R,,,(r)* = Rpp,fl) + VP,.2 - vpzO 

By a passage to the limit, the appropriate solution can be derived for an isotropic 
medium from (4.6). 

For za = 0 we again obtain (3.X,), which is suitable to describe the state of stress of 
both half-spaces, 

It is easy to examine the case when the interface between the half-spaces is not per- 
pendicular to the axis of elastic symmetry. For example, if the plane Y = 0 is the inter- 
face, then it is convenient to represent the solution (2.4) in the form 

u = -Re[(L - v~~C)C(~(~~‘)-~ co1 + (L - vzzc)d2(6,r)-lo21 

U= -Re[(L - ~~zc)Bl(&‘)-l~l + (I‘ - vzzc)&(s,‘)-‘ozl 

w = (L + F)R~[(&‘)-‘~I + (6,‘)-lw,] 
Here 

(4.7) 

s,=apF+P,11+5=& 6,’ = a,‘$ + B,‘?l (p = 1, 2) 

clP 
* = da, ,’ d0, , @,’ = dp, / d%,, ap = %, 

BP = i v’v,_” + %,2, op = Dp&, (4.83 

The “reflected” and “refracted” solutions are connected with variables defined by 

the relationships 
6,, = a,,4 - BP,31 - PpY, + 5 = 0 p=i, 2 

6 
Pq 

(1) = CY. P4 C1)E + Pp$ - P,Ya + 5 = 6 
( ,q = 1, 2, 3 

cc 
SW= P9' e BP, = i r/y + epa 

uPq 
= f&*(l), p&l) = i fv w-z+ * (1F 

Q Pq 

(4.9) 

All the variables coincide at the interface. The solutions metioned above, with sub- 
script pq’, have been chosen from the accepted coupling conditions. The scheme of the 
solution remains as before. 

Let us note that the solution does not turn out to be elementary for y0 f 0, and re- 
quires solution of a fourth power algebraic equation. However, for Y. = 0, i. e. under the 
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effect of a concentrated force along the interface, it again becomes elementary. 
In conclusion, let us note the possibility of applying the method to solve the same 

problems for media with a more general kind of anisotropy, 
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REINFORCED BY STXFFENING RIBS 
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A. I. KALANDIIA 
_ -(Tbilisi) 
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The problem of sresses transmitted through a stiffening rib in a plate is usually examined 
under various simplifying assumptions (see e. g. [l- 51). 

A sufficiently simple method is proposed below for effective construction of solutions 

for problems of this type. This approach based on known methods of solution of planar 
problems permits to construct the solution in finite form. 

The solution is found in integrals of the Cauchy type. The density of these integrals 
is determined by means of Fourier transformation. 

1, The method of solution will be presented using as an example an elastic half-plane 

reinforced by a semi-infinite straight stringer (stiffening rib) continuously attached to the 
plane along the boundary, 

We shall assume that the stresses (in the plate and in the stringer) are produced by only 
one axial force applied at the end of the srringer, 

We locate the plate in the lower half-plane of the pIane of the complex variable 
a = z + iy and let the stringer coincide with the positive part of the real axis, One end 


